skip to main content


Search for: All records

Creators/Authors contains: "Biswal, Prayag"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lithium metal is a promising anode for energy-dense batteries but is hindered by poor reversibility caused by continuous chemical and electrochemical degradation. Here we find that by increasing the Li plating capacity to high values ( e.g ., 10–50 mAh cm −2 ), Li deposits undergo a morphological transition to produce dense structures, composed of large grains with dominantly (110) Li crystallographic facets. The resultant Li metal electrodes manifest fast kinetics for lithium stripping/plating processes with higher exchange current density, but simultaneously exhibit elevated electrochemical stability towards the electrolyte. Detailed analysis of these findings reveal that parasitic electrochemical reactions are the major reason for poor Li reversibility, and that the degradation rate from parasitic electroreduction of electrolyte components is about an order of magnitude faster than from chemical reactions. The high-capacity Li electrodes provide a straightforward strategy for interrogating the solid electrolyte interphase (SEI) on Li —with unprecedented, high signal to noise. We find that an inorganic rich SEI is formed and is primarily concentrated around the edges of lithium particles. Our findings provide straightforward, but powerful approaches for enhancing the reversibility of Li and for fundamental studies of the interphases formed in liquid and solid-state electrolytes using readily accessible analytical tools. 
    more » « less
  2. The physiochemical nature of reactive metal electrodeposits during the early stages of electrodeposition is rarely studied but known to play an important role in determining the electrochemical stability and reversibility of electrochemical cells that utilize reactive metals as anodes. We investigated the early-stage growth dynamics and reversibility of electrodeposited lithium in liquid electrolytes infused with brominated additives. On the basis of equilibrium theories, we hypothesize that by regulating the surface energetics and surface ion/adatom transport characteristics of the interphases formed on Li, Br-rich electrolytes alter the morphology of early-stage Li electrodeposits; enabling late-stage control of growth and high electrode reversibility. A combination of scanning electron microscopy (SEM), image analysis, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and contact angle goniometry are employed to evaluate this hypothesis by examining the physical–chemical features of the material phases formed on Li. We report that it is possible to achieve fine control of the early-stage Li electrodeposit morphology through tuning of surface energetic and ion diffusion properties of interphases formed on Li. This control is shown further to translate to better control of Li electrodeposit morphology and high electrochemical reversibility during deep cycling of the Li metal anode. Our results show that understanding and eliminating morphological and chemical instabilities in the initial stages of Li electroplating via deliberately modifying energetics of the solid electrolyte interphase (SEI) is a feasible approach in realization of deeply cyclable reactive metal batteries.

     
    more » « less
  3. Reactive metals are known to electrodeposit with irregular morphological features on planar substrates. A growing body of work suggest that multiple variables: composition, mechanics, structure, ion transport properties, reductive stability, and interfacial energy of interphases, formed either spontaneously or by design on the metal electrode play important but differentiated roles in regulating these morphologies. We examine the effect of fluorinated thermoset polymer coatings on Li deposition by means of experiment and theoretical linear stability analysis. By tuning the chemistry of the polymer backbone and side chains, we investigate how physical and mechanical properties of polymeric interphases influence Li electrodeposit morphology. It is found that an interplay between elasticity and diffusivity leads to an optimum interphase thickness and that higher interfacial energy augments elastic stresses at a metal electrode to prevent out-of-plane deposition. These findings are explained using linear stability analysis of electrodeposition and provide guidelines for designing polymer interphases to stabilize metal anodes in rechargeable batteries. 
    more » « less